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Slip Effects on Steady Flow Through a Stenosed 
Blood Artery  
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Abstract – The effect of slip boundary conditions on the blood flow taking blood as a Casson fluid has been studied. It is observed that 
axial velocity, volumetric flow rate and pressure gradient decrease along the radial distance as the slip length increases but the wall shear 
stress increases with increase in slip length. All the results derived are presented analytically and graphically by selecting suitable 
parameters.  
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——————————      —————————— 

1 INTRODUCTION  
t is now a well proved fact that stenosis has become a 
serious threat to the life which needs an immediate 

attention. The artery becomes stenosed when its wall 
becomes fatty due to abnormal development along the 
lumen of the wall. Because of this stenosis the 
hemodynamic behaviour of the blood flow is badly 
affected. The stenosis of the artery gives rise to many 
medical problems like stroke, heart attack and serious 
circulatory disorders.   

Many researchers have proved that the blood 
shows a very interesting behaviour. It behaves like a 
Newtonian fluid at high shear rate and it behaves like a non 
– Newtonian fluid at low shear rate. Y. Nuber (1971) 
studied the blood flow, slip and viscometry and the study 
showed that the viscosity indications would exhibit a flow 
dependent behaviour of much the same pattern as the 
actual indications supplied by the usual viscometers if the 
slip function is of plausible form. M.D. Despande et al. 
(1976) discussed the steady laminar flow through modelled 
vascular stenoses and compared the theoretical results with 
available experimental values. J.B. Shukla et. al. (1980) 
analyzed the effects of stenosis on non – Newtonian flow of 
the blood in an artery and showed that the increments in 
the size of the stenosis produce small increments in the 
flow resistance and wall shear stress as the blood shows a 
non – Newtonian behaviour. K. Haldar (1985) studied the 
effects of stenosis shape on blood flow resistance and 
proved that the variations in the stenosis shape may 

decrease the flow resistance but the symmetric stenosis 
gives maximum resistance to flow. L.M. Srivastava (1985) 
also discussed the flow of couple stress fluid through 
stenotic blood vessels and showed that the flow resistance 
and wall shear stress in case of mild stenosis of non – 
Newtonian blood are increased over those with no stenosis 
by 60% and 62% respectively in comparison to the 
Newtonian fluid. J.C. Misra et al. (1993) presented a non – 
Newtonian model for blood flow through arteries under 
stenotic conditions and gave a qualitative analysis for the 
frequency variations of flow rate at various points of the 
artery, phase velocities and transmission per wavelength. 
J.C. Misra et al. (2007) discussed the role of slip velocity in 
blood flow through stenosed arteries considering the blood 
as a Herschel – Bulkley fluid and investigated the influence 
of the slip at the wall of the vessel with mild, moderate and 
severe stenoses. D. Biswas et al. (2011) gave a non – 
Newtonian model to study the steady blood flow through a 
stenosed artery taking blood as a Herschel – Bulkley fluid 
and observed that axial velocity, flow rate increase with slip 
and decrease with yield stress.  

2 MATHEMATICAL FORMULATION  
Laminar steady flow of an incompressible Casson fluid 
through a cylindrical artery having axially symmetric 
stenosis is considered. The geometry of the artery is 
described below:  

I 

———————————————— 
1 Department of Mathematics, Government College, Kota, 
  Rajasthan, India, 
  E mail – manishbhartigaur@gmail.com  

2 Pursuing Ph.D. at Department of Mathematics, Government College, Kota               
  Rajasthan, India.  
  E mail- manoj_ibs@yahoo.co.in  

IJSER

http://www.ijser.org/
mailto:manishbhartigaur@gmail.com
mailto:manoj_ibs@yahoo.co.in


International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014                                                             754 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

 

Let R�(z�) be the radius of the artery in the stenotic region 
and R�0 in the non – stenotic area given as (Young, 1968): 

R�(z�) = �
R�0 −

h�

2
�1 + cos 2π

ls̅
�z�1 + ls̅ − z��� ;   z�1 ≤ z� ≤ z�1 + ls̅

R�0                                             ;   otherwise
 

      (2.1) 

where h�, ls̅ and z�1 are the maximum height, length and the 
location of the stenosis in the artery with whole length l.̅ 
Also, let r̅ and z� are the radial and axial coordinates.  

With above considerations, the equations of motion for the 
blood can be given as  

−∂p�
∂z�

+ 1
r�
∂
∂r�

(r̅τ�c) = 0    (2.2) 

∂p�
∂r�

= 0      (2.3) 

Here p� denotes the pressure at any point and τ�c gives the 
shear stress of Casson fluid with the following simplified 
constitutive equations: 

F(τ�c) = −∂v�c
∂r�

= 1
k�c
�τ�c

1/2 − τ�0
1/2�

2
  for τ�c ≥ τ�0  (2.4) 

∂v�c
∂r�

= 0                            for τ�c ≤ τ�0       (2.5) 

where v�c is the axial velocity of fluid, τ�0 represents the yield 
stress and k�c is the fluid viscosity.    

The flow is subject to slip boundary conditions as follows: 

v�c = β� ∂v�c
∂r�

           at r̅ = R�(z�)
τ�c = Finite value   at r̅ = 0

�   (2.6) 

where β� represents the slip length in the axial direction 

Using following non – dimensional quantities: 

R(z) = R�(z�)
R�0

, z = z�1+l̅s−z�
l̅s

, r = r�
R�0

, H = h�

R�0
, ∂p
∂z

= ∂p�/∂z�
p�0

, τc =
τ�c

p�0R�0/2
, τ0 = τ�0

p�0R�0/2
,  vc = v�c

p�0R�02/2k�c
, β = β�

R�0
 .  (2.7)  

where p�0 is the absolute typical pressure gradient.  

The non – dimensional radius of the stenotic area of the 
artery is 

R(z) = �1 −H cos2 πz ;  0 ≤ z ≤ 1
1                       ;  otherwise    (2.8) 

The non – dimensional forms of the equations of the motion 
(2.2) and (2.3) are  

−2 ∂p
∂z

+ 1
r
∂
∂r

(rτc) = 0         (2.9) 

∂p
∂r

= 0      (2.10) 

The constitutive equations (2.4) and (2.5) of the Casson 
fluid in the dimensionless forms, can be written as     

−∂vc
∂r

= (τc
1/2 − τ0

1/2)2       for τc ≥ τ0                   (2.11) 

∂vc
∂r

= 0          for τc ≤ τ0                    (2.12) 

The  non – dimensional boundary conditions are  

vc = β ∂vc
∂r

           at r = R(z)
τc = Finite value   at r = 0

�   (2.13) 

Using boundary conditions (2.13) in equation (2.9), we get 
the expressions for the shear stress τc and wall shear stress 
τR in the following forms:  

τc = −r ∂p
∂z

     (2.14) 

τR = −R(z) ∂p
∂z

      (2.15) 

From equations (2.14) and (2.15), 

τc
τR

= r
R
      (2.16)      

where R = R(z) 

3 METHOD OF SOLUTION  
Integrating equation (2.11) using equations (2.13) to (2.15), 
the velocity profile for rp ≤ r ≤ R(z) where rp = r�p

R�0
 is the 

non – dimensional radius of the plug flow region, is  
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vc = R
2τR

�(τR2 − τc2)− 8
3
τ0
1/2�τR

3/2 − τc
3/2�+ 2τ0(τR − τc)� −

β�τR
1/2 − τ0

1/2�
2
      (3.1) 

Within pug flow region i.e. 0 ≤ r ≤ rp, τc = τ0 at r = rp.  

Then from equation (3.1), the plug flow velocity is  

vp = R
2τR

�τR2 −
1
3
τ02 −

8
3
τ0
1/2τR

3/2 + 2τ0τR� − β�τR
1/2 − τ0

1/2�
2
  

      (3.2) 

The non – dimensional volumetric flow rate in the form for 
the region 0 ≤ r ≤ R(z) is  calculated as  

Q = 4� rv(r)dr
R

0
 

    = 4∫ rvpdr +rp
0 4∫ rvcdrR

rp
 

Hence  

Q = 2R3

τR
3 �

1
4
τR4 −

4
7
τ0
1/2τR

7/2 + 1
3
τ0τR3 −

1
84
τ04� − 2R2β�τR

1/2 −

τ0
1/2�

2
      (3.3) 

If τ0 ≪ τR i.e.  τ0
τR
≪ 1, then equation (3.3) becomes 

Q = R3

2
�τR −

16
7
τ0
1/2τR

1/2 + 4
3
τ0� − 2R2β�τR

1/2 − τ0
1/2�

2
 (3.4) 

which can also be used to get the wall shear stress for the 
stenosed artery given as  

τR =

�4
7
�2R−7β
R−4β

�τ0
1/2 + � 2Q

R2(R−4β)
+ 16

49
(2R−7β)2

(R−4β)2
τ0 −

4
3
�R−3β
R−4β

�τ0�
1/2
�
2

 

      (3.5) 

For an artery without stenosis i.e. R(z) = R0, the wall shear 
stress is given as  

τR = �4
7
�2R0−7β
R0−4β

�τ0
1/2 + � 2Q

R02(R0−4β)
+ 16

49
(2R0−7β)2

(R0−4β)2
τ0 −

4
3
�R0−3β
R0−4β

�τ0�
1/2
�
2
     (3.6) 

Now using equation (3.5) in equation (2.15), we can 
compute the pressure gradient as  

∂p
∂z

= − 1
R
�4
7
�2R−7β
R−4β

�τ0
1/2 + � 2Q

R2(R−4β)
+ 16

49
(2R−7β)2

(R−4β)2
τ0 −

4
3
�R−3β
R−4β

�τ0�
1/2
�
2
     (3.7) 

 

 

4 RESULTS AND DISCUSSION 

The velocity profile for the axial velocity in the non – plug 
flow region has been obtained in equation (3.1) and results 
are analyzed using graphs in figures 1(a) and 1(b). 

 

Figures 1(a) shows the variations of the axial 
velocity along the axial distance z for the different values of 
the shear stress τc and slip length β with some fixed values 
τR = 0.070,   τo = 0.010 and H = 0.1. It is clear that the axial 
velocity first increases and then decreases after attaining a 
maximum value along the axial distance z. It also clarifies 
that the axial velocity increases whenever the velocity slip β 
increase and it decreases for the increasing values of the 
shear stress. 
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Figure 1(b) shows the variations of the axial 
velocity along the radial distance R(z) for the different 
values of the shear stress τc and slip length β with some 
fixed values τR = 0.070 and τo = 0.010. Graph shows that 
the axial velocity is increasing along the radial distance. 
Also  that the axial velocity increases when the velocity slip 
increases and it decreases as the shear stress increases.  

 

The axial velocity for the plug flow region obtained 
through equation (3.2) has been analyzed in figure 2(a) 
which shows the variations of the plug flow velocity along 
the axial distance z taken for the different values of the 
yield stress τ0 and slip length β with fixed values τR =
0.070 and H = 0.1. It is observed here that the plug flow 
velocity is showing wavy variations along the axial distance 
z. Also the plug flow velocity increases as the velocity slip 
increases and it decreases when the yield stress increases. 

 

Figure 2(b) shows the variations of the axial 
velocity along radial distance R(z) for the different values 
of the yield stress τ0 and slip length β with other fixed 
values τR = 0.070. It shows that the plug flow velocity 
increases along the radial distance and it decreases when 
the yield stress increases. Also the plug flow velocity 
increases as the velocity slip increases. It is to be noted here 
that for the greater values of the yield stress, the plug flow 
velocity increases slowly as the velocity slip increases as 
compared to the lower values of the yield stress.   

  

 

The volumetric flow rate derived through equation (3.4) 
has been graphically presented in figures 3(a) and 3(b). 
Figure 3(a) shows the variations of the volumetric flow rate 
along the radial distance R(z) for the various values of the 
yield stress τ0 and slip length β with a fixed value τR =
0.070. Clearly the volumetric flow rate increases along the 
radial distance. It is observed that the volumetric flow rate 
increases as the velocity slip increases but it decreases when 
the yield stress increases. Also we see that the volumetric 
flow rate increases at a little slower rate for the greater 
values of the yield stress in comparison to the lower yield 
stress. 
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Figure 3(b) presents the variations of the volumetric flow 
rate are shown along the height of the stenosis H for the 
different values of the yield stress τ0 and wall slip length β 
with fixed values τR = 0.070 and z = 0.4. It is obvious that 
the volumetric flow rate slows down along the height of the 
stenosis with increments in yield stress but it increases 
when the velocity slip increases.  

 

Figure 4(a) explains the variations of the wall shear 
stress obtained in equation (3.5) along the radial distance 
R(z) for the different values of the slip length β with a fixed 
value Q = 1. It shows that the wall shear stress decreases 
along the radial distance. Also the wall shear stress 
decreases when velocity slip increases. 

 

Figure 4(b) shows the variations of the of the wall 
shear stress along the height of the stenosis H for the 
different values of the yield stress τ0 and wall slip length β 
with some fixed values Q = 1 and z = 0.4. It is clear that the 
wall shear stress increases along the height of the stenosis. 
Also the wall shear stress increases as the yield stress 
increases and it decreases when the velocity slip increases. 

 

The variations of the pressure gradient obtained in 
equation (3.7) are shown in figures 5(a) and 5(b). Figure 5(a) 
shows that the variations of the pressure gradient along the 
radial distance R(z) for the different values of the slip 
length β with a fixed value Q = 1. Obviously the pressure 
gradient increases along the radial distance. Also it 
increases as the velocity slip increases. 
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Figure 5(b) gives the variations of the pressure 
gradient along the height of the stenosis H for the various 
values of the yield stress τ0 and wall slip length β with 
some fixed values Q = 1 and z = 0.4. It is observed that the 
pressure gradient decreases greatly along the height of the 
stenosis. Also the pressure gradient decreases whenever the 
yield stress increases and it increases as the velocity slip 
increases.  

5 CONCLUSION 

In the present study authors made an attempt to present 
the theoretical observations of the different flow features by 
considering a stenosed artery with blood behaving like a 
Casson fluid. The results are explained analytically and 
graphically by choosing some suitable parameters. The 
graphical analysis of the study reveals that the axial 
velocity is showing the wave like variations along the axial 
distance z and for increments in velocity slip it increases in 
both plug flow and non – plug flow domains. Also the axial 
velocity increases along the radial distance as the slip 
length increases in both plug flow and non – plug flow 
regions. The volumetric flow rate increases along the radial 
distance as the velocity slip increases. The axial velocity 
and the volumetric flow rate decrease when the yield stress 
increase. It is observed that the plug flow velocity and the 
volumetric flow rate increase gradually for the greater 
values of the yield stress as compared to the lower yield 
stress. The wall shear stress decreases and the pressure 
gradient increases along the radial distance as the velocity 
slip increases. The analysis regarding the effect of the 
stenosis over other flow properties like volumetric flow 
rate, wall shear stress and pressure gradient has also been 

done. The volumetric flow rate and the pressure gradient 
decrease when the yield stress increases but they increase 
with increments in velocity slip along the height of the 
stenosis. Also the wall shear stress increases as the yield 
stress increases and it decreases when the velocity slip 
increases along the height of the stenosis.    
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